Learning Optimal Scheduling Policy for Remote State Estimation Under Uncertain Channel Condition
نویسندگان
چکیده
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Optimal Communication Scheduling and Remote Estimation over an Additive Noise Channel
This paper considers a sequential sensor scheduling and remote estimation problem with one sensor and one estimator. The sensor makes sequential observations about the state of an underlying memoryless stochastic process, and makes a decision as to whether or not to send this measurement to the estimator. The sensor and the estimator have the common objective of minimizing expected distortion i...
متن کاملMulti-sensor Transmission Management for Remote State Estimation under Coordination
This paper considers the remote state estimation in a cyber-physical system (CPS) using multiple sensors. The measurements of each sensor are transmitted to a remote estimator over a shared channel, where simultaneous transmissions from other sensors are regarded as interference signals. In such a competitive environment, each sensor needs to choose its transmission power for sending data packe...
متن کاملAttenuated or Augmented? Monetary Policy Actions under Uncertain Economic State and Learning
Monetary policy is conducted in an environment of considerable uncertainty. In particular, Bernanke (2007) emphasizes that monetary authority faces substantial challenges in determining the sources of variation in macroeconomic variables. What can policy-makers do when supply and demand disturbances are unobserved and indistinguishable? Is a policy rule widely conducted otherwise still appropri...
متن کاملLocomotive Scheduling Under Uncertain Demand
Each day, railroads face the problem of allocating power to trains. Often, power requirements for each train are not known with certainty, and the fleet of locomotives may not be homogeneous. To deal with both of these complications, we formulate a multicommodity flow problem with convex objective function on a timespace network. The convex objective allows us to minimize expected cost under un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Control of Network Systems
سال: 2020
ISSN: 2325-5870,2372-2533
DOI: 10.1109/tcns.2019.2959162